
Rachel	  Bean	  WFIRST	  February	  2011	  

Figures of merit for testing modifications to GR 

WFIRST meeting 2-3rd Feb 2011 



Rachel	  Bean	  WFIRST	  February	  2011	  

Outline 

•  Modeling modifications to GR 
•  Effect of modification to GR on observations 
•  Combining observations 
•  Including systematics 
•  Figures of merit 
•  Some thoughts 
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Constraints on gravity 

•  Terrestrial and Solar System 
–  Lab tests on mm scales 
–  Lunar and planetary ranging 
–  Binary pulsar timing 

•  Galactic  
–  Galactic rotation curves and velocity dispersions 
–  Satellite galaxy dynamics 

•  Intergalactic and Cluster 
–  Galaxy lensing and peculiar motions 
–  Cluster dynamical, X-ray and lensing mass estimates 

•  Cosmological 
–  Late times: comparing lensing, peculiar velocity, galaxy position, ISW 

correlations 
–  Early times: BBN, CMB peaks 
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Modifications to GR 

•  Alternative origin for cosmic acceleration to Λ or dark energy fluid 
–  Alter Friedmann and acceleration equations at late times and on 

cosmic scales 

•  No thoroughly compelling theories, but instructive models exist 
–  Examples: DGP , f(R), scalar tensor gravity 

•  Have to satisfy tests of gravity on all scales 
–  Recover GR in high density regions (chameleon mechanism) 
–  Scales at which transition occurs model dependent (kpc-Mpc?) 

•  Use phenomenological model rather than specific theories to  
–  understand limits of current data 
–  Provide benchmark for future survey goals 

S =
�

d4x
√
−g

1
16πG

R +
�

d4x
√
−gLmat (30)

(31)

S =
�

d4x
√
−g

1
16πG

(R + f2(R)) +
�

d4x
√
−gLmat (32)

(33)

S =
�

d4x
√
−g

1
16πG

f1(φ)R +
�

d4x
√
−gLmat (34)

(35)

S =
�

d5x
�
−g(5) m

(5)3
p

2
R(5) +

�
d4x
√
−gLmat (36)

(37)

S =
�

d4x
√
−g

1
16πG

R +
�

d4x
√
−gLmat,DE (38)

ä
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Modeling modifications to GR 

•  Can modify both homogeneous expansion (to create 
accelerated expansion in H(z)) and metric perturbations 

•  In GR, H(z) plus matter census determine perturbation evolution 
–  Metric potentials φ and ψ,   

–  density and velocity perturbations                  and 

•  Modifications to GR alter the relationship between perturbations 
and background 
–  Relation between φ and ψ, and δ and θ	

–  At late times and cosmological scales, coincident with acceleration 

θ = ∇.vδ =
δρ

ρ

ds2 = −(1 + 2ψ)dt2 + a2(1− 2φ)dx2
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Changing the growth rate 

•  The “gamma” parameter , γ	

–  used by ISWG report 
–  Describes change to the growth rate in CDM density perturbation 

–  γ∼0.55 in accelerated era 

f ≡ d ln δc

d ln a
≡ Ωm(a)γ
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Changing the relationship between φ and ψ	


•  Many theories of gravity have similar phenomenological properties 

•  A modification to Poisson’s equation, Q 

Q≠1: can be mimicked by  
–  additional (dark energy?) perturbations,  
–  modified dark matter evolution 

•  An inequality between Newton’s potentials, R 

R≠1: not easily mimicked.  
–  potential smoking gun for modified gravity? 
–  Significant stresses exceptionally hard to create in non-relativistic fluids 

e.g. DM and dark energy.  

k2φ = −4πGQa2ρ∆

ψ = Rφ
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Modeling and Figures of Merit 

•  Simple modeling 
–  scale independent, but allow simple redshift evolution 

•  Figures of merit in γ 
–  95% confidence limit in γ	


•  Figures of merit in Q and R 
–  Area of 95% c.l. in Q and Q(1+R)  plane 

f = Ωm(a)γGR+∆γ , ∆γ(z) = ∆γ0a
sγ(a) = γGR(a) + ∆γ

Q(a) = 1 + (Q0 − 1)as, R(a) = 1 + (R0 − 1)as FoM =1/A 

Q(1+R)/2 

Q 
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Three groups of extra galactic observations  
for testing gravity 

I: Background expansion 
II: Growth, up to some 

normalization 
III: Growth directly 

CMB angular diameter 
distance 

Supernovae luminosity 
distance  

BAO angular scale 

Galaxy autocorrelations 

Galaxy – ISW x-corrln 

Xray and SZ galaxy cluster 
measurements 

Ly-alpha measurements 

CMB ISW autocorrelation 

Weak lensing 
autocorrelation 

Peculiar velocity distribution/ 
bulk flows 
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CMB autocorrelations 

•  Late time modifications => 
change in ISW on large scale 

•  Increasing Q or R boosts 
growth of LSS 
–  Q and R degenerate 
–  opposite effect to 

acceleration 
•  CMB cools, ΔT reduced, 

and could be <0  
•  Cl~ ΔT2 falls then increases 

(not monotonic) 
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ISW-galaxy correlations 

•  Monotonic in Q & R  
–  Galaxy position δ ~ φ	

–  ISW dependent on d(φ+ψ)/dt 

•  Boosting potential (Q,R>1) 
–  Suppresses ISW  
–  Reduces ISW-galaxy 

correlation  
–  Since ΔT can become 

negative can lead to anti-
correlation 

ISW-galaxy correlation for  
low z LRG sample 
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Weak lensing correlations 

•  Lensing deflection angle 

•  Magnification, convergence 

•  Boosting potentials (Q,R>1) 
boosts lensing amplitude 
–  Monotonic and degenerate in 

Q (1+R) 

α = −∇⊥(φ + ψ)2d

Lensing	  correla;on	  for	  high	  z	  sample	  
κ = −1

2
k2(φ + ψ)
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Peculiar velocities and bulk flows 

•  Coherent peculiar motions of galaxies 
(Θ=θ/aH) can be statistically estimated 
from redshift space distortions 

•  1D velocity dispersion 

•  Complementary dependence on φ and 
ψ from galaxy position, lensing and ISW  

•  Emission line (star forming) galaxies 
–  Sensitive flux dependency has significant 

implications for survey depth (Geach et al 
09) 
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FIG. 5: We present the measured evolution of coherent galaxy
motions at the mean z = 0.25 and 0.38 which are consistent with
predictions for a WMAP7–normalised ΛCDM model (solid curve).
The plotted errors are one sigma as shown in Table I. Dotted curves
represent predictions from dark energy models with constant w =
−1.4,−1.2,−0.8 and −0.6 from top to bottom, and dash curve is
for DGP model.

tortions seen in the observed two–dimensional two–point
correlation function of Luminous Red Galaxies from the
SDSS DR7 sample. Our new methodology is based on
measuring the scale–independent growth functions, g∗b
(galaxy density) and g∗Θ (velocity density), which do not
depend upon the physics of the late universe (e.g. dark
energy), but do exploit our knowledge, from the CMB,
of the early Universe.
We have determined values of g∗Θ from the redshift–

space distortions seen in the SDSS DR7 LRG data and,
converting these values into the 1–D velocity dispersion
σv, we find σv = 3.01+0.45

−0.46 h
−1 Mpc at z = 0.25 and

σv = 3.69+0.47
−0.47 h

−1 Mpc at z = 0.38. These values for σv

are fully consistent with a WMAP7–normalized ΛCDM
model with w ! −1 ± 0.2 as illustrated in Fig 5. Our
observations are however, inconsistent with a DGP model
for the Universe to high statistical significance (> 5σ).
Our results provide a competitive, and complementary,
constraint on these cosmological models compared to the
usual geometric probes of the Universe.
We have converted our measured values of σv into ve-

locity units (as opposed to lengths presented above) and
find 270+40

−41 km/s and 320+41
−41 km/s at a mean redshift of

z = 0.26 and 0.38 respectively, assuming a ΛCDM Uni-
verse. As expected, these coherent motions (or velocity
dispersions) are fully consistent with expectations from
a ΛCDM Universe. These estimates are however, incon-
sistent with local measurements of the peculiar velocity
field (or “bulk flows”) which have recently been mea-
sured to be much greater than these velocities. If the
local, observed bulk flows were converted (using aHσv)
to the redshift range studied here (0.16 < z < 0.47),
then we would have expected to see coherent motions of
! 600 km/s, which is different from our best fit values
to high statistical significance. It is difficult to directly
cross-check these different methods and redshift intervals,
but it does suggest that the local measurements see by
[17, 19, 20] are inconsistent with the statistical distribu-
tion of coherent motions measured in a large volume of
the Universe as probed by our SDSS LRG sample. One
possible explanation is that our Galaxy is located in an
unusual part of the Universe, e.g., in a highly over, or
underdense region of the Universe, which could explain
the differences in the velocity measurements.

In the future we plan to extend our measurements to
higher redshifts, in order to extend the history of coher-
ent motions (e.g. Fig. 5). As shown in our paper, these
motions can be measured in an independent fashion free
of some of the problems associated with other measures of
the growth history of the Universe, and the assumed cos-
mological model for the late–time Universe, e.g., we are
able to test not only the conventional dark energy model,
but also “interacting” and “clustered” dark energy mod-
els, not to mention the general class of modified gravity
theories. Unlike other approaches, our measurements are
free from any possible violation of the consistent equa-
tions.
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Figure 2. Detail of how peculiar velocities lead to the redshift distortions illustrated in
Figure 1. The dots are ‘galaxies’ undergoing infall towards a spherical overdensity, and
the arrows represent their peculiar velocities. At large scales, the peculiar velocity of an
infalling shell is small compared to its radius, and the shell appears squashed. At smaller
scales, not only is the radius of a shell smaller, but also its peculiar infall velocity tends
to be larger. The shell that is just at turnaround, its peculiar velocity just cancelling
the general Hubble expansion, appears collapsed to a single velocity in redshift space. At
yet smaller scales, shells that are collapsing in proper coordinates appear inside out in
redshift space. The combination of collapsing shells with previously collapsed, virialized
shells, gives rise to fingers-of-god.

with radius, δ ∝ r−1, located in an expanding Universe with critical mean
density, Ω = 1. The free-fall gravitational collapse of such a spherical pres-
sureless overdensity can be computed analytically (Peebles 1980, §18). The
dots (galaxies) started out uniformly distributed in the initial conditions,
being uniformly placed around a series of uniformly spaced concentric shells.
Thus the density of dots in Figure 1 indicates the density of galaxies in the
collapsing overdensity, as observed in redshift space. Figure 1 omits shells
that have collapsed to less than half their radius at turnaround, which shells
may be expected to scatter off previously collapsed shells, and to virialize.

Figure 2 shows how peculiar velocities produce the pattern illustrated
in Figure 1. On large scales, peculiar infall towards the overdensity causes
it to appear squashed along the line of sight. The squashing increases to
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Current constraints 

•  WMAP, SDSS LRG auto and 
ISW-x correlations, COSMOS 
lensing, Union SN1a 

•  ISW and ISW-galaxy 
correlations drive constraints 

•  Principal degeneracy along 
Q(1+R)/2 

•  FoM ~ 0.02 

Bean	  &	  Tangma;tham	  PRD	  2010	  
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Describing future constraints 

•  2-point autocorrelation between observables X and Y using 
Limber approximation 

2

is dependent on δ, and the gradient of the the peculiar
velocity, θ in any general frame, ∆ ≡ δ +3H(1+w)θ/k2.

At late times there is negligible anisotropic shear
stress, since relativistic species make up a subdominant
fraction of the energy density, and, if GR is obeyed, the
two potentials are trivially related, φ = ψ.

If gravity does not obey GR it could modify the growth
history of δc and the relationship between φ and ψ. In
our analysis, we decouple δc’s evolution from the Poisson
equation. We use two parameters to describe changes to
the growth history,

γ(k, a) ≡
ln(δ̇c/Hδc)

ln Ωm(a)
, η(k, a) ≡

φ(k, a)

ψ(k, a)
, (4)

and assume that the Poisson equation (3) relates φ to the
modified ∆.

While additional sources of matter inhomogeneity,
such as dark energy perturbations, could modify γ they
would not give rise to η "= 1.

Here we assume γ and η are constant and scale inde-
pendent when deviating from GR at low redshifts.

II. DESCRIPTION OF GROWTH-DEPENDENT
DATA

To probe the inhomogeneous growth of structure, we
employ four growth dependent correlations: CMB ISW,
galaxy and weak lensing convergence auto-correlations;
and ISW-galaxy cross-correlations.

We apply the Limber approximation and consider the
2D angular power spectrum for the correlation between
two fields, X and Y ,

CXY
l =

∫ χ∞

0

dχ

χ2
WX(χ)WY (χ)TX(kl, χ)TY (kl, χ)∆2

R(kl),(5)

where X, Y = I,g and κ for ISW, galaxy and convergence
fields respectively, ∆2

R
(k) is the dimensionless primor-

dial spectrum of curvature fluctuations, WX is the win-
dow function associated with the field X , and TX is the
transfer function, with kl = (l + 1/2)/χ.

For the ISW and galaxy correlations, we use data
compiled by Ho et al.[33] for 2MASS and SDSS LRG
surveys, with each broken into 4 and 2 redshift bins,
2MASS0-3 and LRG0-1, respectively. These are cross
correlated with WMAP5 CMB temperature data. Fol-
lowing [33], we model the non-linear corrections and
redshift-dependent bias for each galaxy bin using a Q-
model for the matter power spectrum [34],

Pobs(k) = b2
normbrel(z)2

1 + Qgk2

1 + Agk
Plin(k), (6)

brel(z) is a fixed, unit normalized function describing the
redshift variation of the galaxy bias in each bin based on
their luminosities [35], and Ag = 1.7h−1Mpc fits numer-
ical simulations of the galaxy power spectrum [34].

The transfer functions for ISW, galaxy and weak lens-
ing sources are

TI = e−τreion

(

˙̃φ + ˙̃ψ
)

, (7)

Tg =

√

1 + Qgk2

1 + Agk
δ̃c, (8)

Tκ = −k2(φ̃ + ψ̃), (9)

where τreion is the reionization optical depth, X̃ is the
transfer function of X , normalized so that ∆2

X(k, χ) =
X̃2(k, χ)∆2

R(k).
The galaxy and lensing window functions are depen-

dent on the distribution of galaxy number density in each
redshift bin, i, for the relevant survey, ni(χ),

W i
g(χ) = bi

rel(χ)ni(χ), (10)

W i
κ(χ) =

∫ χ∞

χ

dχ′ni(χ′)
r(χ)r(χ′ − χ)

r(χ′)
, (11)

where ni is normalized such that,
∫ χ∞

0 dχni(χ) = 1. The
bias-weighted mean redshifts 〈z〉 =

∫

dzbrel(z)n(z) for
the 2MASS0-3 and LRG0-1 samples are 0.06, 0.07, 0.10,
0.12, 0.31 and 0.53 respectively. For ISW, WI(χ) = 1.

Following [33], we treat bnorm and Qg as free parame-
ters that are analytically marginalized over [36] using the
galaxy auto-correlations. This optimal value of the bias is
then used to normalize the ISW-galaxy cross-correlation
spectrum, CIg

obs(l) = bnormCIg(l).
The COSMOS weak lensing survey data is given in

terms of the projected power spectrum of 2D shear cor-
relations, in the notation of [37],

C1,2(θ) ≡ C0(θ) ± C4(θ), (12)

C0,4(θ) ≡
1

2π

∫ ∞

0
dl lCκκ

l J0,4(lθ). (13)

The data is broken up into 3 redshift bins, z < 1, 1 < z <
1.4 and 1.4 < z < 3. We use the weak lensing likelihood
code written by Julien Lesgourgues [38].

Complementary to the growth-dependent data we
constrain the homogeneous background evolution using
WMAP 5-year CMB temperature and polarization data
[2], the joint BAO analysis of SDSS and 2dF galaxy sur-
veys [3, 4] and the “Union” Type 1a supernovae set [1].

III. ANALYSIS

We perform a Monte Carlo Markov Chain (MCMC)
analysis using a version of the CosmoMC code [36] mod-
ified to include general growth evolution. We assume
that the expansion history is described by a flat ΛCDM
cosmology. Flat priors are applied to γ and 1/η (cho-
sen because the ISW and lensing data are sensitive to
∼ (1 + 1/η)2) in a given redshift range and 6 other
parameters: the fractional baryon and CDM densities,
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Combining observations 

•  ISW, lensing, galaxy position and peculiar velocity measurements 
have distinct dependence on φ and ψ	


•  Cross-correlations could be key to improving constraints 
–  Between observables: helps remove bias sensitivity 

–  Between z bins: tomography helps probe growth evolution 

Eg ∼
Cgκ

l

CgΘ
l

Cg1g2
� , Cg1κ2

� , C
κNph

κNph

�
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Distinguishing between modified gravity and Λ 

GR	  

DGP 

f(R) 

TeVeS K=0.1 
TeVeS K=0.09 

TeVeS K=0.08 

 Zhang, Liguori, RB, Dodelson PRL 2007 

Eg ∼
Cgκ

l

CgΘ
l
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Recent proof of principle with SDSS LRG data 
13 

 

Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1! error bars (s.d.) including the statistical error on the measurement19 of ! 

(filled circles). The grey shaded region indicates the 1!  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+"CDM model, EG = !m,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+"CDM 

(EG = 0.408 ± 0.029(1! ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001! 0.1 

(EG = 0.328 ! 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Reyes et al Nature 2010  
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Modeling systematics 

•  Bias 
–  K and z dependent bias 

interpolated on Nk x Nz bins 
•  Galaxy position  
•  Peculiar velocity due to 

evolution bias (Percival & 
Schafer 07) 

•  Cross correlations 

•  Nonlinearities 
–  Conservative approach: make cuts 

on linear scales (Rassat et al 08) 

–  Or assume Zel’dovich approx. holds 
& use Smith et al fit  

•  Intrinsic alignments (Bean, 
Bridle, Kirk, Laszlo in prep) 
–  Additional contributions to 

lensing and galaxy 
correlations (Bernstein 09) 

–  Include bias uncertainties in 
all terms (Joachimi and Bridle 
09) 

•  Photometric redshifts   
–  Redshift uncertainty, bias and 

catastrophic errors  

limax = kmax(zi)χ(zi)

Cκκ → Cκκ + CIκ + CκI + CII

Cgκ → Cgκ + CgI
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Fisher survey and cosmological parameters 

•  Fisher matrix analysis 

•  Including/excluding ell cut at breakdown of linearity 

9

to the supernovae obtained from the apparent magnitude

m(z) = 5log [dL (z)] +M+ 25 (57)

where dL is measured in Mpc, andM is its intrinsic mangitude of the supernova.
We bin the supernovae by redshift and consider both statistical errors, based on an inherent spread in supernovae

magnitudes σm, and a systematic floor that increases monotonically with z to δm at the maximum redshift [? ].

σ(zk) =

����
�

∆z

∆zsub

� �
σ2

m

Nk
+

�
δm

z

zmax

�2
�

(58)

where Ni is number of supernovae in bin i with median redshift zi,∆z = zi+1 − zi. Each bin is divided into sub-bins
in which supernovae are equally distributed. ∆zsub is the width of each sub-bin.

Specs to be updated

Survey Parameters Planck

ν(GHz) 100 143 217

fsky 0.8

θFWHM (arc min) 10.7 8.0 5.5

σT (µK) 5.4 6.0 13.1

σE(µK) - 11.4 26.7

TABLE III: CMB survey specifications for a Planck-like survey.

Survey Parameters BOSS Big BOSS

zmin 0.1 0.1

zmin 0.7 1.1

Vs(Gpc3) 15.5 90

n̄g(Mpc−3) 1.1× 10−4

fsky 0.25 0.50

TABLE IV: Summary of the specifications assumed for the peculiar velocity survey.We consider two options, a Stage III survey,
based on BOSS specifications, and a Stage IV survey, such as BigBOSS [? ].

C. Figures of Merit

We consider constraints both in terms of their 68% and 95% confidence limits and for the dark energy parameters
in terms of two effective ‘figures of merit’ (FoM) that quantify the joint constraints between key pairs of marginalized
parameters i) the DETF figure of merit on w0, wa and ii) an analogous modified gravity figure of merit in the Q0,
Q0(1 + R0)2/ parameter space. In each case, if the 68% error ellipse in the 2D marginalized space has area A, then
our figure of merit is π/A = 1/ab where a and b are the semi-major and semi-minor axes of the ellipse.

V. RESULTS

We first consider the projected constraints on the dark energy parameters. Figures ?? and ?? show 2D marginalized
error ellipses and the associated figures of merit in the w0−wa and Q0−Q0(1+R0)/2 planes as one combines successive
datasets. These central plots are also the most conservative, as they include the marginalization over the gridded bias
parameters, pbias, in (??) for galaxy position and peculiar velocity measurements, and also the cuts in � (??) that
down-weight the contributions of non-linear modes.
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including marginalization over a set of bias parameters

pbias = {zb, B
ij
g , Rij

g , Bij
v , Rij

v } (33)

We consider Q0(1 + R0)/2 rather than R0 as the former closely describes a combination in the {Q0, R0} parameter

space well-measured by ISW and lensing measurements.

The inverse Fisher Matrix, F−1
ij , quantifies the uncertainties between parameter pi and pj when all other parameters

are marginalized over, by giving an estimate of the curvature of the likelihood surface around its maximum. When

the observables are Gaussian distributed the Fisher can be approximated by

Fij =
∂ta
∂pi

Cov−1
ab

∂tb
∂pj

, (34)

for a theoretical set of observables t and their data covariance vector, Covab ≡ Cov(ta, tb).

To calculate the derivatives of the observables with respect to changes in the cosmological parameters we take 2%

step sizes in each parameter about a fiducial model. The fiducial model is chosen to closely match a bestfit scenario

for the WMAP 7 data. The values are summarized in Table ??. We checked that the results are largely insensitive

to the specific step size in the range 1-2.5%. A much smaller step size can lead to numerical precision errors in the

code, while a larger step size starts to imprecisely estimate the gradient at the maximum of the likelihood.

Parameter Value

Ωb 0.0227

Ωm 0.1107

H0 71.3851

τ 0.0856

w0 -1

wa 0

Q0 1

Q0(1 + R0)/2 1

ns 0.9693

σ8 0.80125

TABLE II: The fiducial cosmological model used in the Fisher and MCMC analyses

We complement the Fisher Matrix approach with a MCMC analysis of the same prospective surveys. MCMC gives

a fuller characterization of the likelihood surface, in the event it is not Gaussian, however with all data combined we

don’t expect significant deviations in this regard. Our main reason for doing the MCMC is that it allows us to obtain

constraints on additional, derived parameters:

• the growth factor for CDM overdensites relative to today

g0(k, a) ≡ ∆c(k, a)

∆c(k, a = 1)
(35)

,

• the growth index describing the change in growth rate as a function of matter density,

γ(k, a) ≡ ln f(k, a)

ln Ωm(a)
(36)

• the power law index describing the growth rate of CDM overdensities as a function of expansion factor.

f(k, a) ≡ d ln ∆c(k, a)

d ln a
(37)

The last two are in particular well suited to quickly indicate deviations from GR, as in a ΛCDM universe γ ≈ 0.55

at late times and f < 1 at these times, and f = 1 during matter domination. Thus we can describe constraints

on deviations from GR, not only in terms of our MG paramaters but also in terms of these more general growth

parameters.
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and the window functions are given by

WT,E(χ) = 1, (16)
Wga(χ) = na(χ), (17)

Wκa(χ) = χ

� χ∞

χ
dχ�na(χ�)

�
1− χ

χ�

�
, (18)

where na is the distribution of galaxy number in the ath redshift bin, normalized such that,
� χ∞
0 dχna(χ) = 1.

Following Smail et. al. [? ], for a flux-limited survey, we assume the galaxies per unit redshift per square arcminute
are distributed in redshift as

ntot(z) ∝ z2 exp
�
− z

z0

�1.5

. (19)

We consider photometrically obtained objects for the lensing surveys, where there is an inherent uncertainty in an
object’s true redshift. We assume that there are negligible catastrophic failures in how the photometric redshifts
are related to their true redshift, z, and model the probability of an object having a photometric redshift zph as a
Gaussian conditional probability, with width σ(z) = σph(1 + z),

P (zph|z) =
1√

2πσ(z)
exp

�
− (z − zph)2

2σ(z)2

�
. (20)

We consider two prospective galaxy survey configurations: i) a Dark Energy Taskforce (DETF) [? ] Stage III
mission, to emulate the DES survey, and ii) DETF Stage IV survey, to emulate a prospective EUCLID or LSST
survey . Each survey spans a range zmin to zmax, is split into Nph photometric redshift bins, and has a projected
density of galaxies ng per square arcminute of sky. The redshift bin boundaries are chosen so that the total number of
observed galaxies in each survey is equally distributed between the bins. The specific survey specifications are given
in Table ??.

Survey Parameters Stage III Stage IV

σph 0.07 0.05√
2z0 0.8 0.9

Nph 5 10

zmin 0.001 0.001

zmax 3 3

n2d
g (per sq. arcmin) 10 35

σγ 0.23 0.35

fsky 0.12 0.50

TABLE I: Summary of specifications assumed for the large scale structure weak lensing survey. We consider two options, a
DETF Stage III survey, based on DES specifications, and a Stage IV survey, based on an LSST.

The true distribution of galaxies na(z) that fall into the ath photometric redshift bin, with z(a)
ph < z < z(a+1)

ph , is
given by

na(z) =
� z(a+1)

ph

z(a)
ph

ntot(z)P (zph|z)dzph (21)

which for the conditional probability distribution (??) gives

na(z) =
1
2
ntot(z) [erf(xa+1)− erf(xa)]

where xa ≡ (za
ph − z)/

√
2σ(z).

We treat non-linear scales simplistically, in the context of modifications to gravity, and use the Smith et. al
prescription, calibrated off GR simulations, to boost galaxy transfer functions, Sg and Sκ, on non-linear scales. If the
effect of modification to gravity on the peculiar motion and over density follows the Zel’dovich approximation then
the Smith et. al. prescription should still hold in the non-linear regime [? ], however we recognize that there are
modified gravity models where deviations on non-linear scales can deviate from this [? ]. We discuss in section ??,
we discuss how we quantify the impact of excluding non-linear modes by performing cuts in � space in the analysis.

p = {Ωb,Ωc, H0, τ, w0, wa, Q0, Q0(1 + R0)/2, ns, σ8; bij
g , r

ij
g }

Fij =
∂ta
∂pi

Cov−1
ab

∂tb
∂pj

t = {CTT
� , CTE

� , CEE
� , CTg1

� , ..., CEg1
� , ...Cg1g1

� , Cg1g2,
� , ..., C

κNph
κNph

,

� }
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FoM 1: Error  in γ           	


Bean,Laszlo,	  Muller	  in	  prep	  

∆γ(a) = ∆γ0a
3
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FoM 2: Q vs Q(1+R) error ellipse 

Bean,Laszlo,	  Muller	  in	  prep	  

k2φ = −4πGQa2ρ∆
ψ = Rφ

FoM =1/A 

Q(1+R)/2 

Q
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Thoughts 

•  Measuring the growth history is key to testing for large scale 
deviations to GR, (but also for measuring neutrino masses, primordial 
non-Gaussianity).  
–  WFIRST can do more than measure w0/wa. This is an important 

opportunity, not just a twofer.  
–  Should consider this in assessing WFIRST. It’s not just piggy-back science 

•  Multiple complementary measures of growth are important to break 
degeneracies 
–   how does WFIRST fit in with EUCLID, BiOSS/BigBOSS, LSST, others?  

•  Systematics modeling to be factored in on FoM calculations 
–  Characterizing systematics is going to be key (need to decide how to do 

this for mature and nascent approaches) 

•  Couple of different figures of merit (do we look at both or just one?): 
–   γ simple phenomenological, 
–  R/Q more info. More direct tie to theory. 
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EXTRA SLIDES 
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Modifications to GR 

•  Large scale modifications to GR an active area of theoretical 
investigation 
–  GR 

–  f(R) gravity 

–  Higher dimensional gravity e.g. DGP 
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Theories can be described in this way 

•  DGP: Scale independent modifications 

•  f(R) gravity : scale dependent modifications 

k2φ = −4πGQa2∆ (18)

gi = iki(1 + R)ψ (19)

k2ψ = k2Rφ− shear stresses (20)
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Here we have kept only the leading order term in kH .
Note that the exact choice of fζ is rarely important

for observable quantities. Any choice will produce the
correct behavior of the metric evolution since that de-
pends only on enforcing ζ′ = O(k2

Hζ). Hence observ-
ables associated with gravitational redshifts and lensing
are not sensitive to this choice. Only observables that
depend on the comoving density on large scales beyond
the quasi-static regime are affected by this parameter.
Furthermore the super-horizon density perturbation in
Newtonian gauge or any gauge where the density fluctu-
ation evolves as the metric fluctuation is also insensitive
to fζ .

On small scales, recovery of the modified Poisson equa-
tion (10) from (16) implies

Γ = fGΦ− , (kH → ∞) . (20)

Finally to interpolate between these two limits we take
the full equation of motion for Γ to be

(1 + c2
Γk2

H)
[
Γ′ + Γ + c2

Γk2
H (Γ − fGΦ−)

]
= S . (21)

For models where S → 0 as a → 0 we take initial con-
ditions of Γ = Γ′ = 0 when the mode was above the
horizon.

In summary, given an expansion history H(a), our
PPF parameterization is defined by 3 functions and 1 pa-
rameter: the metric ratio g(ln a, kH), the super-horizon
relationship between the metric and density fζ(ln a), the
quasi-static relationship or scaling of Newton constant
fG(ln a), and the relationship between the transition
scale and the Hubble scale cΓ. For models which modify
gravity only well after matter radiation equality, these
relations for the metric, density and velocity evolution
combined with the usual transfer functions completely
specify the linear observables of the model. In specific
models, these functions can themselves be simply param-
eterized as we shall now show for the f(R) and DGP
models.

B. f(R) Models

In f(R) models, the Einstein-Hilbert action is supple-
mented by the addition of a free function of the Ricci
scalar R. The critical property of these models is the ex-
istence of an extra scalar degree of freedom fR = df/dR
and the inverse-mass or Compton scale associated with
it. The square of this length in units of the Hubble length
is proportional to

B =
fRR

1 + fR
R′

H

H ′
, (22)

where fRR = d2f/dR2. Below the Compton scale, the
metric ratio g → −1/3.

The evolution of B and the expansion history come
from solving the modified Friedmann equation obtained
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f(R)
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FIG. 3: Evolution and scale dependence of the metric ratio g
in f(R) models compared with the PPF fit. Here B0 = 0.4,
weff = −1 and Ωm = 0.24.
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FIG. 4: Evolution and scale dependence of Φ− in f(R) models
compared with the PPF fit. Here B0 = 0.4, weff = −1 and
Ωm = 0.24.

by varying the action with respect to the metric. We
follow the parameterized approach of [24] where a choice
of the expansion history through weff and the Compton
scale today B0 ≡ B(ln a = 0) implicitly describes the
f(R) function and model. For illustrative purposes, we
take Ωm = 0.24 and weff = −1.

Given H(ln a) and B(ln a), the metric ratio at super-
horizon scales comes from solving Eqn. (7)

Φ′′ +

(
1 −

H ′′

H ′
+

B′

1 − B
+ B

H ′

H

)
Φ′ (23)

+

(
H ′

H
−

H ′′

H ′
+

B′

1 − B

)
Φ = 0 , (kH → 0) .

Q
(1
+R

)/
2	  
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FIG. 6: Evolution and scale dependence of Φ− in the DGP
models compared a PPF fit. Here Ωm = 0.24 and the PPF
parameter cg = 0.14.

IV. NON-LINEAR PARAMETERIZATION

As discussed in §II C, we expect that a successful modi-
fication of gravity will have a non-linear mechanism that
suppresses modifications within dark matter halos. In
this section, we construct a non-linear PPF framework
based on the halo model of non-linear clustering. Al-
though a complete parameterized description of modified
gravity in the non-linear regime is beyond the scope of
this work, the halo model framework allows us to incor-
porate the main qualitative features expected in these
models. Searching for these qualitative features can act
as a first step for cosmological tests of gravity in the non-
linear regime.

Under the halo model, the non-linear matter power
spectrum is composed of two pieces (see [32] for details
and a review). One piece involves the correlations be-
tween dark matter halos. As in general relativity, the
interactions between halos should be well described by
linear theory. The other piece involves the correlations
within dark matter haloes. It is this term that we mainly
seek to parameterize.

Specifically given a linear power spectrum of density
fluctuations PL, the halo model defines the non-linear
spectrum as the sum of the one and two halo pieces

P (k) = I1(k) + I2
2 (k)PL(k) , (35)

with

I1(k) =

∫
dM

M

(
M

ρ0

)2 [
dn

d lnM
y2(M, k)

]
,

I2(k) =

∫
dM

M

(
M

ρ0

)
dn

d lnM
b(M)y(M, k) , (36)

where ρ0 = ρm(ln a = 0). Here the integrals are over the
mass M of dark matter halos and dn/d lnM is the mass
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FIG. 7: PPF non-linear power spectrum ansatz for an f(R)
model. The non-linear power spectrum is constrained to lie
between two extremes: defined by halo-model mass functions
with the quasi-static growth rate [cnl = 0 or P0(k)] and the
smooth dark energy growth rate with the same expansion
history [cnl = ∞ or P∞(k)]. Here B0 = 0.001, weff = −1 and
Ωm = 0.24 with other parameters given in the text.
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FIG. 8: Fractional difference in P (k) of the PPF non-linear
f(R) ansatz from the smooth dark energy prediction with
the same expansion history. As cnl → ∞ deviations become
confined to the weakly non-linear to linear regime. The model
parameters are the same as in Fig. 7.

function which describes the comoving number density
of haloes. y(M, k) is the Fourier transform of the halo
density profile normalized to y(M, 0) = 1 and b(M) is
the halo bias. Note that I2(k = 0) = 1 so that the linear
power spectrum is recovered on scales that are larger than
the extent of the halos.

A simple ansatz that restores general relativity in the
non-linear regime is that the mass function and halo pro-
files remain unchanged from general relativity. Specifi-
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gi = iki(1 + R)ψ (19)

k2ψ = k2Rφ− shear stresses (20)
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R(a) more complicated


